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Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among for-
est types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with
satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery
given these challenges? Here we describe a case study of mapping tropical forests to floristic classes with
gap-filled Landsat imagery by judicious combination of field and remote sensing work. For managers, we
include background on current and forthcoming solutions to the problems of mapping detailed tropical
forest types with Landsat imagery. In the study area, Trinidad and Tobago, class characteristics like decid-
uousness allowed discrimination of floristic classes. We also discovered that we could identify most of
the tree communities in (1) imagery with fine spatial resolution of 61 m; (2) multiseason fine resolution
imagery (viewable with Google Earth); or (3) Landsat imagery from different dates, particularly imagery
from drought years, even if decades old, allowing us to collect the extensive training data needed for
mapping tropical forest types with ‘‘noisy’’ gap-filled imagery. Further, we show that gap-filled, synthetic
multiseason Landsat imagery significantly improves class-specific accuracy for several seasonal forest
associations. The class-specific improvements were better for comparing classification results; for in
some cases increases in overall accuracy were small. These detailed mapping efforts can lead to new
views of tropical forest landscapes. Here we learned that the xerophytic rain forest of Tobago is closely
associated with ultramafic geology, helping to explain its unique physiognomy.

Published by Elsevier B.V.
1. Introduction

Tropical forest managers need to produce detailed forest maps
for REDD+, which is a mechanism that gives countries financial
incentives for Reducing Emissions from Deforestation and Degra-
dation and managing forests to sustain biodiversity and enhance
carbon stocks (REDD+) (Wertz-Kanounnikoff and Kongphan-api-
rak, 2009; Phelps et al., 2010). Maps of forest types, including tree
community distributions, are essential for many related manage-
ment questions. Vegetation mapping is often a first step in regional
planning for biodiversity conservation (Scott et al., 1993). In addi-
tion, as the carbon storage of forests becomes more variable across
B.V.

Eastern Caribbean Institute of
a landscape, estimates of carbon storage that are based on forest
inventory plots become less precise and accurate. Estimates are
improved, and the number of forest plots can be reduced, when
forests are stratified into more homogenous units, such as by forest
type (Estrada, 2011).

No example exists of a country-wide map of tropical forest tree
communities at Landsat scale. At the floristic level prior Landsat-
based maps do not consider clouds and use only one season of
imagery (Chust et al., 2006; Sesnie et al., 2008). Mapping for REDD+
and other management, however, requires that gaps from clouds in
remotely sensed imagery be filled. Gap-filled imagery is mosaicked
or composited from many scene dates to fill image gaps that stem
from failure of the scan-line corrector on the Landsat 7 Enhanced
Thematic Mapper (ETM+) (Wulder et al., 2008). We also use the
term to include filling gaps from clouds as in Helmer and Ruefen-
acht (2005). Tropical forest mapping with gap-filled Landsat imag-
ery has been limited to mapping forest physiognomic types
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(Kennaway and Helmer, 2007; Helmer et al., 2008; Kennaway
et al., 2008), forest cover or change (Hansen et al., 2008; Lindquist
et al., 2008), or forest vertical structure, disturbance type and wet-
land type (Helmer et al., 2010).

By tree communities we mean forest associations (sensu Jen-
nings et al., 2009), which are species-specific assemblages. They
are distinct from more general and easily mapped physiognomic
classes (i.e. formations, where forests are classified with modifiers
like deciduous, semi-evergreen, evergreen or montane; closed or
open; broad-leaved or needle-leaved, etc.). Associations are also
more detailed than life zones (sensu Holdridge, 1967). Life zones
are climatic classes; they only generally relate to species composi-
tion (Pyke et al., 2001). Trinidad has four life zones (nine including
transitional zones) (Nelson, 2004), compared with seven forest for-
mations or about 26 forest associations (counting mature native
forests, plantations and bamboo) (Beard, 1946a).

Major challenges when mapping forest associations are that (1)
most Landsat imagery over tropical forests has clouds or other data
gaps; (2) at first glance different tree communities look the same in
air photos or have similar signatures in multispectral satellite
imagery; (3) residual errors from gap-filling make the spectral sig-
natures of classes more variable, increasing spectral overlap among
different forest types; and (4) ground-based reference data for
training image classifications are sparse. Moreover, previous work
mapping tropical forest types with Landsat imagery uses some
noncommercial computer programs that few staff have experience
with.

How can managers meet these challenges and produce detailed
maps of tropical forest types for REDD+ with Landsat? Our goals
are to help answer that question. Some unexpectedly promising
findings suggest that simple steps can improve results. We present
a case study from Trinidad and Tobago, and for managers we give
some background on current and forthcoming solutions to the
above challenges. We also specifically test the following (the first
two questions have not been previously tested):

1. Whether tropical forest associations can be mapped with
decision-tree classification of gap-filled Landsat imagery
and reference data supplemented by fine resolution imagery
like that viewable with Google Earth (Google, 2010) (Version
5.2) [Software], which is available from http://www.google.-
com/earth/index.html.

2. Whether three gap-filled Landsat images made from three
1980s scenes with different phenologies would be redundant
with one another, or would incrementally improve classifica-
tion models of tropical forest association, when each gap-
filled image comes from using two of the three scenes to fill
gaps in the third scene, yielding a form of synthetic multisea-
son imagery.

3. Whether gap-filled imagery of the thermal band improves
mapping of low-density urban lands.

2. Background

2.1. Filling clouds and other data gaps in Landsat imagery

To fill clouds and other data gaps in Landsat imagery, image
data from different dates are combined after applying atmospheric
correction, or after normalization to a reference scene. The reason
is that the images from different dates have different atmospheric
conditions, sensor calibration, sun elevation, view angle and vege-
tation or soil phenology. Without normalizing the data, the spec-
tral signatures of a given forest type will vary greatly among the
pixels sourced from different image dates, increasing spectral con-
fusion among types. To normalize these signatures, normalization
models use: (1) nonlinear relationships between clear overlapping
pixels of fill scenes and reference scenes (Helmer and Ruefenacht,
2005); (2) linear relationships between clear overlapping pixels
that are somehow localized, e.g. drawn from a small surrounding
window (Howard and Lacasse, 2004; Chen et al., 2011) and thereby
at the scene level are not linear; (3) localized linear relationships
based on the relationships between overlapping pixels of two
images with coarse spatial but fine temporal resolution that are da-
ted closely to the base and fill Landsat scenes (Roy et al., 2008); or,
potentially, (4) the phenological pattern of past imagery.

2.2. Defining the space in which forest types are separable

Different forest types may only display subtle spectral differ-
ences in multispectral imagery from the peak of a growing season
or when forested wetlands are not inundated. To help distinguish
spectrally similar forest types, image bands from different times
or from ancillary environmental data can be added to improve
the potential to discriminate types. For example, multiseason
imagery reduced confusion among tropical forest formations in
Landsat imagery (Bohlman et al., 1998; Tottrup, 2004), and
monthly composites of imagery with coarse spatial resolution
(250 m–1 km) supported large-area mapping of tropical forest for-
mations (Gond et al., 2011).

Adding data bands of environmental variables is like adding im-
age bands from other times. Topography, for example, helps distin-
guish spectrally similar forest types when they occur in different
environments (Skidmore, 1989). Another mapped variable that
helps predict tree species composition is substrate. Limestone
and serpentine geological substrates, or acid soils, are classic
examples (Beard, 1946a; Ewel and Whitmore, 1973; Pyke et al.,
2001). Studies use geological substrate when mapping tropical for-
est type with satellite imagery (Helmer et al., 2002; Chust et al.,
2006; Kennaway and Helmer, 2007). Geographic position also ex-
plains variation in the composition of tropical forest tree species
(Chinea and Helmer, 2003; Chust et al., 2006) and is also used as
a mapping predictor layer (Chust et al., 2006; Sesnie et al., 2008).

Like adding image bands from different seasons, adding image
bands from other years or decades also helps distinguish tropical
forest types by helping to distinguish successional stage (Kimes
et al., 1999; Helmer et al., 2000), or disturbance type (Helmer
et al., 2010). Disturbance type and land use affect the species com-
position of secondary tropical forests (Aide et al., 1996; Chinea,
2002; Chinea and Helmer, 2003). With long time series of gap-
filled Landsat we can map classes of tropical forest disturbance
type and age that relate to young forest species composition (Hel-
mer et al., 2010; Larkin et al., 2012). Mapping old forest type and
forest disturbance history from a long time series creates maps
of ‘‘forest harvest legacies’’ sensu Sader and Legaard (2008). For
REDD, estimates of forest biomass from lidar or plot data may then
be averaged over patches of similar forest type or disturbance his-
tory (e.g. Helmer et al., 2009; Nelson et al., 2009) to estimate forest
carbon storage over landscapes.

To effectively incorporate ancillary data that maps environmen-
tal variables into classifications, machine learning classification
algorithms (and expert systems) are used. They outperform linear
methods like maximum likelihood classification and do not as-
sume that class spectral distributions are parametric. Commonly
used algorithms are decision trees (Lees and Ritman, 1991; Hansen
et al., 1996), neural networks (Chen et al., 1995; Foody et al., 1995),
and support vector machines (Brown et al., 2000).

2.3. Augmenting sparse plot data with high-resolution imagery

Studies have mapped forest types by predicting their spatial
distributions with ordination of plot data against mapped environ-
mental gradients and satellite imagery (Ohmann and Gregory,
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2002; Chust et al., 2006). Plot data from systematic inventories,
however, are often not available. They often miss rare forest types,
and they may not include enough plots to capture the spatial and
spectral variability of forest associations. Complex climatic,
edaphic, anthropogenic and dispersal factors all affect the spatial
patterns of forest associations. Moreover, residual errors in the
normalization models used to produce gap-filled imagery add
noise (i.e. variability) to the spectral signature of each forest type,
increasing spectral confusion among types. When classifying gap-
filled Landsat imagery with decision trees and ancillary data, train-
ing data must represent the spatial and spectral range of each class,
including observations from the different dates that compose a
gap-filled image (Helmer and Ruefenacht, 2007). This statement
implies the need for thousands of well-distributed classification
training points, more points than are normally available from field
plots. Sesnie et al. (2008), for example, had only 144 forest plots,
but they collected thousands of training pixels for each lowland
forest association from 1:60,000-scale black and white air photos.

3. Methods

3.1. Study area

The Republic of Trinidad and Tobago (10�410N, 61�130N) is a
southeastern Caribbean country that includes two main islands,
Trinidad and Tobago, and many small outer islands that together
encompass 5133 km2 (Fig. 1). Trinidad lies on the South American
continental shelf and was once part of South America. Its vegeta-
tion is similar to that of northeastern South America. Tobago
Fig. 1. The study covered the Rep
formed by obduction at the edge of this shelf (Snoke et al.,
2001a). Its flora has an Antillean influence but is more closely re-
lated to that of South America (Oatham and Boodram, 2006).

With a tropical climate, mean annual temperatures range from
21 to 27 �C in Trinidad and 23 to 27 �C in Tobago. Total precipita-
tion ranges from about 1370–2900 mm year�1 on Trinidad and
1630–2530 mm year�1 on Tobago (Hijmans et al., 2005) and in-
cludes a dry season from January to April and a wet season from
July to November; May to June and December are transitional
months. Most forests are moist broadleaved seasonal evergreen,
but forests also include hardleaved evergreen coastal, deciduous,
semi-evergreen, montane evergreen, and wetland formations
(Beard, 1944a, 1946a).

Elevations reach 940 m in the Northern Range of Trinidad (Farr
et al., 2007), which has steep topography and free draining soils
developed over metamorphic rock. Elevations reach 320 m in Trin-
idad’s smaller Central Range (Farr et al., 2007), which is composed
of marine sedimentary rocks. Some limestone outcrops and hills
occur in the Northern and Central Ranges. Alluvial and terrace low-
lands, with clay to sandy clay soils and restricted drainage, occur
between the Northern and Central ranges and southeast of the
Central Range. The Southern Range is a series of hills that rise to
about 280 m. Soils of these hills and of the southern lowlands have
formed mainly over sandstones and siltstones. Southwestern Trin-
idad is mainly marine sedimentary (Donovan, 1994; Day and
Chenoweth, 2004).

On Tobago, elevations range from sea level to about 570 m on
the Main Ridge. Surficial rocks in Tobago’s northeastern third,
including the Main Ridge, are metavolcanic schist. Meeting the
ublic of Trinidad and Tobago.



Fig. 2. Cloud and scan gaps in Landsat 7 ETM+ scenes were filled with images from other dates. The fill images first underwent regression tree normalization (Helmer and
Ruefenacht, 2005) to the base scene. Shown here are: (a) the date band for Tobago; (b) the gap-filled image for Tobago; (c) the date band for Trinidad; and (d) the gap-filled
image for Trinidad. Images display bands 5, 4 and 3 in RGB.

150 E.H. Helmer et al. / Forest Ecology and Management 279 (2012) 147–166
Main Ridge to the south are igneous rocks, including some
serpentine substrates in ultramafic intrusives. The lowlands fur-
ther southwest are sedimentary rocks; the southwest point is
limestone (Maxwell, 1948; Jackson and Donovan, 1994; Snoke
et al., 2001b).
3.2. Gap-filled multiseason, multidecade Landsat imagery

All Landsat imagery over Trinidad and Tobago has cloud or scan
gaps. We made recent gap-filled ETM+ imagery for Trinidad and
Tobago, filling gaps from clouds, scan lines and scene edges in



Fig. 2 (continued)
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reference scenes from the early dry season of 2007 (December)
with image data from fill scenes (Table 3 and Fig. 2). In our prior
work mapping physiognomic forest types, image gaps came only
from clouds, as we used imagery dated before late May of 2003.
Here scan gaps added uncertainty to our ability to map forest
associations. Each fill scene first underwent regression-tree
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normalization to the 2007 data. This nonlinear normalization min-
imizes the atmospheric, phenological and sensor differences be-
tween the base and fill scenes and is described elsewhere
(Helmer and Ruefenacht, 2005, 2007).

In Trinidad, we mapped land cover with the 2007 gap-filled
imagery. We then mapped forest association with separate classi-
fication models that were applied only to forests. For these classi-
fication models of forest association, we added gap-filled imagery
from the late dry season (see below). Tobago has far fewer mature
forest associations than Trinidad; there we simultaneously
mapped land cover and forest associations with the 2007 gap-filled
imagery.

We used the early dry season imagery for land-cover mapping
because forest is most distinct from nonforest then: deciduous for-
ests are still leafed out, making them more spectrally distinct from
nonforest. In contrast in the late dry season, leaf loss for deciduous
tropical tree species peaks, causing confusion between deciduous
forest and nonforest. In the wet season, flooding helps distinguish
forested wetlands, but dense herbaceous cover is greened up and
may be spectrally similar to young forest.

In the course of this work we observed that imagery from the
late dry season (late March–early May) might be helpful for distin-
guishing among the many seasonal forest associations in Trinidad,
most of which would simply be classified as moist forests in the life
zone system. Consequently, for mapping forest type we made three
gap-filled images from the mid- to late dry season for mapping for-
est type with three Landsat TM scenes from the years 1985–1987
(Table 3). Because each of these 1980s images displayed slightly
different phenology, we sought gap-filled images that represented
the unique phenology of each scene, and so each scene served as a
base scene to which we then normalized the other two scenes.
Whether this form of synthetic multiseason imagery would im-
prove results had not been tested for mapping tropical forest
associations.

Another reason for using imagery from the 1980s is that adding
image bands from previous decades to the set of spectral bands
being classified helps distinguish mature and old-growth tropical
forest from secondary forest (Kimes et al., 1999; Helmer et al.,
2000). Being �20 years old, the 1980s data might help distinguish
forest younger than �15–20 years old in the 1980s (up to �35–
40 years old in 2007) from older (‘‘mature’’) forests (assuming that
forest regrowth becomes indistinct from mature forest after about
15–20 years).

3.3. Cloud masking

In making the mosaics, we masked clouds and cloud shadows
with: (1) an algorithm that identified clouds and potential cloud
shadows with a series of models in ERDAS Imagine and a short rou-
tine in Interactive Data Language (IDL); (2) an IDL program that
identified actual cloud shadow from clouds, potential cloud sha-
dow and solar geometry which was partly based on Choi and
Bindschadler (2004); and (3) manual refinement. The algorithm re-
quires some clear area over land and water, and clouds must be no
warmer than water. It ignores snow and ice.

The algorithm to identify clouds and potential cloud shadows
uses Histogram Fitting for Mapping (HFM), which Helmer et al.
(2009) describe for making a forest mask with image-specific
thresholds found from image histograms. Water and land pixels
are identified with the Shuttle Radar Topography Mission (SRTM)
Water Body Dataset (SWBD) (NGA, 2003). Next, IDL fits a normal
distribution to the histogram of the thermal infrared band (TIR-
band6) for water pixels, and then for land pixels. Cool and warm
clouds are found as pixels cooler than or as cool as most water pix-
els, respectively, or cooler than land if land is cooler than water.
Clouds are preliminarily masked from the image, and the parame-
ters are again estimated for each band by fitting a normal distribu-
tion to the new histograms of water and land. Pixels are then
masked from the identified clouds if they are darker than or as dark
as most water in the second shortwave-infrared band (SWIRband7),
removing warm or shallow water. Cool land is then removed from
the cloud mask by removing pixels that are as dark as most land in
the blue band. Potential cloud shadow over land is mapped as
areas that are darker in bands 4 and 5 than most land.

Next, each cloud patch is gradually shifted in the direction of
the shadows. The distance of maximum overlap between pixels
in the shifting cloud patch and pixels of potential cloud shadow
is found as the peak of the distribution of overlapping pixels for dif-
ferent distances. The shifted cloud patch is expanded slightly and
taken as identified cloud shadow. For Landsat ETM+ imagery with
scan-line gaps, a majority filter fills scan gaps with clouds or poten-
tial cloud shadows where these elements are in the image data sur-
rounding gaps. Final manual refinement was followed by adding a
three-pixel buffer to both the clouds and the identified cloud shad-
ows. The buffer removes mixed pixels that occur around cloud
edges.
3.4. Collecting reference data on tropical forest association

We used the hierarchical classification system of Beard (1944a,
1946a) who classified native forests in Trinidad and Tobago and
mapped their distributions on public lands (which comprise about
40% of the land). The system starts with floristic groups that are
‘‘recognizable by diagnostic species.’’ The associations are grouped
into alliances of canopy dominants and then into formations based
on physiognomic factors, primarily structure, deciduousness, and
other characteristics of leaf type (Tables 1 and 2; local names in
S1–S2). Formations ‘‘express a habitat determined by the interplay
of the environmental factors of climate, topography, and soil’’
(Beard, 1944b, 1946a). Montane seasonal forests, for example,
are ‘‘seasonal’’ because of the importance of deciduous species,
which are more common in this forest than in other montane for-
est because it occurs on more freely draining limestone substrates.
The associations within a formation, though floristically defined,
usually also differ slightly in physiognomy. The semi-evergreen
associations differ in deciduousness, for example, as do some of
the seasonal evergreen associations. Vegetation physiognomy af-
fects spectral response in satellite imagery, particularly deciduous-
ness and canopy development. It follows that because several
floristic associations are physiognomically distinct, they may also
be distinct in multispectral imagery if it is dated from the correct
season or year.

Beard based his system on strip surveys conducted from 1927–
1933 and 1941–1942, and aerial photos from 1938 (scale
1:40,000). All trees >9.9 cm diameter at breast height (dbh) were
counted along continuous, 10-m wide transects, and then summed
by species over each 200-m long section. The plot networks were
dense: transects in central and southern Trinidad, for example,
were spaced only 2 km apart, resulting in about 1600 plots.

Given the high spatial density and large number of plots Beard
used, and the detailed descriptions and tallies of the species com-
position and deciduousness of associations, we assumed that this
classification system is valid for forests where large-scale clearing
for agriculture did not occur since the surveys, even though it was
not based on modern ordination techniques. We also assumed that
we could rely on the Beard maps as one information source when
learning to identify forest classes in fine resolution imagery. Our
conclusions are conditioned on these assumptions. Forest associa-
tions on public lands were again mapped with aerial photos from
1969 and field work conducted in 1979–1980 (FRIM, 1992), and
the mapping results are almost identical. We modified the names



Table 1
Forest classes mapped for Trinidad; mature forest classes are those from Beard (1946a,b).a

Forest Formation and Association according to Beard (1946a,b) Symbol Identifying sourcesa

Dry evergreen forest–littoral woodland (canopy)
Coccoloba uvifera–Hippomane mancinellab LWS 1 m Img, Maps, Fieldb

Roystonea oleracea–Manilkara bidentatab LWP 1 m Img, Mapsb

Deciduous seasonal forest (canopy)
Machaerium robinifolium–Lonchocarpus punctatus–Bursera simaruba Ss 1 m Img, Field, L7 200303

Deciduous to semi-evergreen seasonal forest (canopy)
Protium guianense–Tabebuia serratifolia ecotone and Peltogyne floribunda–T. serratifolia–P. guianense Ip 1 m Img, Field, L7 200303

Semi-evergreen seasonal forest (canopy)
P. floribunda–Mouriri marshallii Pbl Plots, 1 m Img, Maps, Field
Trichilia pleeana–Brosimum alicastrum–Bravaisia integerrima Aj Plots, 1 m Img, Maps, Field
T. pleeana–B. alicastrum–Protium insigne Ag Plots, 1 m Img, Maps, Field
B. alicastrum–Ficus yoponensisb Af Maps, L5 1987b

Evergreen seasonal forest (emergents/canopy/subcanopy)
Aniba panurensis and A. trinitatis-Carapa guianensis/Ligania biglandulosa Cd Maps, Field
A. panurensis and A. trinitatis – Carapa guianensis – Eschweilera subglandulosa/Pentaclethra macroloba/Attalea maripa Cco Plots, 1 m Img, Maps, Field,

L7200301
C. guianensis–Pachira insignis – E. subglandulosa/P. macroloba/Sabal sp. Cca Plots, 1 m Img, Maps, Field
E. subglandulosa–P. insignis–C. guianensis/Clathrotropis brachypetala/A. maripa Cb Plots, 1 m Img, Maps, Field,
Mora excelsa–C. guianensis/P. macrolobac Cm Plots, 1 m Img, Maps, Field

Montane rain forest (Canopy)
Transitional seasonal evergreen to lower montane Cd-LMF 1 m Img, Maps
Byrsonima spicata–Licania ternatensis–Sterculie pruriens (Lower) LMF Maps, Field
Inga macrophylla–Guarea guara (seasonal)b SMF Maps, L5 1987b

Transitional Lower Montane – Montane LMF-MF 1 m Img, Maps
Richeria grandis–Eschweilera trinitensis (Montane Cloud) MF 1 m Img, Maps, Field

Forested Wetlands
Mangrove (includes different associations)d ESM 1 m Img, Maps, Field
Other swamp communitiese ESO 1 m Img, Maps, Field

Young secondary forest classes
Hevea brasiliensis – former plantation Br 1 m Img, Field, L7200301
Young secondary forest (<15–20 yr) YSF 1 m Img, Field
Young secondary forest (<35–40 yr) or abandoned or semi-active woody agriculture YSF-

Wag
1 m Img, Field

Young secondary forest – former Cocos nucifera plantation YSF-C 1 m Img, Field
Bambusa vulgaris YSF-B 1 m Img, Field

Tree plantations
Tectona grandisb PT 1 m Img, Fieldb

Pinus caribaeab PP 1 m Img, Fieldb

Otherb PO 1 m Img, Fieldb

a The latin names for seasonal and semi-evergreen forest types are altered to better represent canopy dominance. 1Plots = Plots; Field = field identification; 1 m Img = 61-m
imagery; Maps = Maps from air photos and plots (Beard (1946a,b); FRIM, 1992); L7 = Landsat 7 ETM+; L7 2003 03 = L7 from 03/31/2003; L7 2003 01 = L7 from 01/19/2003; L5
1987 = Landsat 5 TM dated 05/07/1987.

b Manually delineated.
c Both modeled and manually delineated.
d Associations may include these species: Rhizohpora mangle, R. harrisonii, R. racemosa, Avicennia germinans, A. Schaueriana, Laguncularia racemosa, or Conocarpus erectus.
e The Class other swamp communities was manually differentiated, based on 61-m imagery, into palm swamp (Roystonea oleracea or Mauritia flexuosa), swamp forest

(Pterocarpus officinalis); swamp forest ecotone (Carapa guianensis–Ptercarpus officinalis), marsh forest (Manicaria saccifera–Jessenia oligocarpa–Euterpe precatoria), or marsh
forest – seasonal evergreen ecotone.
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of evergreen seasonal associations, adding other diagnostic domi-
nant species that Beard mentions in addition to the timber species.

Data for training and testing the classification models came
from assigning land cover or forest type to patches of about 16
or fewer pixels (but only one to four pixels for low-density urban
lands). The data sources were: (1) three weeks of field work in
which experts identified forest association in locations throughout
the islands; (2) the locations of 241 inventory plots that experts
had labeled to forest association; and 3) learning to identify many
of the forest associations in fine resolution imagery (or in two cases
in Landsat imagery), based on the field work, plots, and unique his-
torical work by Beard (1944a, 1946a). The large number of Beard’s
associations that we could identify was unexpected, and we give
more details in the results section.

Fine resolution imagery (61 m) was available for the entire
study area and dated from October 2000 to August 2009. Most data
was from 2004 to 2007. It included island-wide tiled mosaics of
pan-sharpened, true color IKONOS images (examples shown in
S3); island-wide tiled mosaics of black-and-white, orthorectified
digital air photos; and pan-sharpened, true color images from Dig-
ital Globe that were viewable with Google Earth. The Google Earth
images included most of the IKONOS images above, but also in-
cluded more than one date of fine resolution imagery for most
places.

Two or more distinct spectral classes were discernible for some
forest types. We separated such classes in decision-tree models
and then recombined them in the final map and accuracy assess-
ment. For example, a gradient of decreasing greenness from west
to east was evident for two of the lowland seasonal evergreen asso-
ciations. This gradient likely reflects the gradient of increasing
deciduousness that Beard (1946a) mentions. As in prior work, a
sunlit and shadowed spectral class represented each forest type
in hilly areas. We also separated the training pixels for Mora forests
into three geographic regions: south, central and Northern Range.



Table 2
Forest classes mapped for Tobago; mature forest classes are those from Beard (1944a,b).

Forest formation and association Code Identifying sourcesa

Dry evergreen forest – littoral woodland
Coccoloba uvifera–Hippomane mancinellab Manilkara bidentatab LWSb XFBab 1 m Img, Maps, Field 1 m Img, L72000 08

Deciduous seasonal forest
Bursera simaruba–Coccothrinax barbadensis Ssd 1 m Img, Maps, Field

Semi-evergreen seasonal forest
Hura crepitans–Tabebuia chrysantha–Spondias mombin Sch 1 m Img, Maps, Field

Lowland rain forest
Carapa guianensis–Euterpe precatoria Ccp 1 m Img, Maps, Field

Xerophytic rain forest
Manilkara bidentata–Guettarda scabra XFBb 1 m Img, Maps, L72000 08

Lower montane rain forest
Licania biglandulosa – Byrsonima spicata LMF 1 m Img, Maps, Field

Young secondary forest classes
Young secondary forest (<15-20 yr), abandoned woody agriculture YSF-Wag 1 m Img, Field
Secondary forest – former Cocus nucifera plantationb YSF-Cb 1 m Img, Field
Bambusa vulgaris YSF-B 1 m Img, Field

Forested wetlands
Mangrove ESM 1 m Img, Maps, Field
Other wooded wetlands ESO 1 m Img, Maps, Field

a Field = field identification; 1 m Img = 61-m imagery; Maps = maps from air photos and plot data (Beard (1944a,b)) and maps, air photos and fieldwork from FRIM (1992);
L72000 = Landsat 7 ETM+, 001/052, dated 08/06/2000.

b Manually delineated.

Table 3
Four gap-filled Landsat image mosaics were created for Trinidad and one for Tobago from the 19 scenes listed here. Each mosaic included a reference, or base scene. The clear parts
from other scene dates, or fill scenes, then filled the cloudy parts of the base scene after undergoing normalization to the base scene with the regression tree method of Helmer
and Ruefenacht (2005). Fill scenes are listed in the order that they filled cloudy areas in the base scene (i.e., top to bottom). Scene types: L5 = Landsat 5 TM; L7 = Landsat 7
Enhanced TM.

Dates and types of scenes in gap-filled
mosaics (month/day/year)

Percent of studyarea Dates and types of scenes in gap-filled
mosaics (month/day/year)

Percent of study area

Trinidad 2007, path/row 233/053 Trinidad 1980s, path/row 233/053
12/16/2007 – L7 57 03/14/1985 – L5 46
03/05/2002 – L7 21 05/04/1986 – L5 22
01/29/2001 – L7 13 05/07/1987 – L5 10
04/17/2006 – L7 3.3
01/30/2007 – L7 1.5 05/04/1986 – L5 42
03/21/2008 – L7 0.7 03/14/1985 – L5 27
02/03/2006 – L7, 001/053 1.3 05/07/1987 – L5 10
02/11/2003 – L7, 001/053 1.4
01/24/2008 – L7 0.02 05/07/1987 – L5 34
10/25/2000 – L7 0.3 03/14/1985 – L5 29

05/04/1986 – L5 14

Tobago 2007, path/row 233/052
12/16/2007 – L7 63
12/02/2008 – L7 14
02/18/2008 – L7 5.7
02/02/2008 – L7 6.0
04/01/2006 – L7 6.2
11/13/2001 – L7 3.9
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3.5. Classifications and classification comparisons

To create classification mapping models, we applied the deci-
sion-tree software See5 to text files that list class assignment and
values for spectral and ancillary predictor layers for each reference
pixel. To produce each map, we applied the models from See5 to
the stack of spectral and ancillary data layers with software from
Ruefenacht et al. (2008).

A randomly-selected 90% of the reference data served to train
each classification model, leaving 10% of the data for estimating
model error. On average, then, about one to two pixels per patch
were available for testing. Calculating classification accuracy from
pixels that are randomly selected from multi-pixel patches of
training data likely yields optimistic error estimates. The bias
arises because pixels within a patch are likely to be more similar
to each other than to other pixels of the same class. Limiting test
data to 10% of the reference data reduces this bias from the more
commonly withheld proportion of 30%, but probably does not re-
move it. Sufficient resources were not available for a completely
independent accuracy assessment (Sesnie et al., 2008).

We used one decision-tree classification model to simulta-
neously map both land cover and forest type for Tobago, as Tobago
has only seven main forest associations that are closely related to
topography. The model used the gap-filled image centered on
2007 and the other predictor layers listed in the next section.

Trinidad was divided into two mapping zones: the Northern
Range was one; the rest of Trinidad (the ‘‘lowlands’’) was the other.
With the decision-tree software described above, we first mapped
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land cover for the two Trinidad zones with the gap-filled image
centered on 2007. We then mapped forest type for the two Trini-
dad zones for the areas that the land-cover models classified as for-
est, using the gap-filled imagery centered on 2007, all three of the
gap-filled images from the 1980s, and the other predictor layers
described below. In those results Mora forests in the southeast
and Northern Range showed more confusion with other forest
types. Consequently, we manually cleaned up the result for Mora
forests in those areas and then overlaid the edited Mora forests
onto forest types as mapped after excluding Mora training points
in those areas.

To test if the gap-filled imagery from the 1980s and the thermal
band improved classifications, we compared overall accuracy,
class-specific accuracies, and the Kappa coefficient of agreement
of models that used various band combinations. We tested
whether overall and class-specific accuracies differed significantly
via the McNemar test for comparing related proportions (Foody,
2009). Comparisons were of (1) land cover with vs. without the
gap-filled thermal band; and (2) for Trinidad, forest association
with vs. without one or more of the gap-filled images from the
1980s.
3.6. Ancillary environmental predictor layers

We considered the following predictor layers for the decision-
tree classification models: spectral bands and indices from the
gap-filled imagery; maps of rainfall and temperature (Hijmans
et al., 2005); and topography (Farr et al., 2007), geology (Suter,
1960; Snoke et al., 2001b) and geographic position. Hijmans et al.
(2005) mapped climate at 1-km resolution based on climate sta-
tion data and topography. Their data did not include the denser
network of rain gauges set up by the local water authority, but
those rainfall data were not available to us. Topographic layers in-
cluded elevation, slope, slope position, curvature, sine and cosine
of aspect, topographic shading for the time of the base scene for
Fig. 3. Forest association and land cover for Tobago were mapped with decision-tree clas
associations are classified according to the system of Beard (1944).
each gap-filled image, and topographic relative moisture index
(TRMIM) (Manis et al., 2002). We used these topographic deriva-
tives to represent soil drainage.

Spectral data included all bands from each Landsat mosaic, a
date band (e.g. Fig. 2a and c) and six spectral indices. The indices
were tasseled cap (TC) brightness, greenness and wetness (Crist
and Cicone, 1984; Huang et al., 2002), the wetness–brightness dif-
ference index (WBDI) (Helmer et al., 2009), the normalized differ-
ence vegetation index (NDVI), and the normalized difference
structure index (NDSI) (Hardisky et al., 1983; Helmer et al., 2010):

WBDI ¼ TC Wetness� TC Brightness ð1Þ
NDVI ¼ ðNIRb4 � REDb3Þ=ðNIRb4 þ REDb3Þ ð2Þ
NDSI ¼ ðNIRb4 � SWIRb5Þ=ðNIRb4 þ SWIRb5Þ ð3Þ
3.7. Manual delineation and editing

Several forest associations were manually delineated (Tables 1
and 2). We manually delineated managed and former timber plan-
tations, including teak, Caribbean pine and abandoned Brazilian
rubber. Though usually spectrally distinct from adjacent forest,
delineating them was fast, thanks to their regular boundaries and
limited number, and would reduce confusion among other classes.
Spanish cedar plantations are also common in Trinidad. Though we
located many patches of it during field work, most of them were
too small to be clearly identifiable in the Landsat imagery. We also
manually delineated the two littoral forest associations. Many of
the patches were narrow, resulting in pixels being mixed with
water, sand or wetland, making their spectral signatures highly
variable. Nonforested wetlands were also manually delineated
due to large signature variability. Nonmangrove forested wetlands
were one class in decision-tree models and then manually divided
into subclasses. Most other manual editing corrected confusion be-
tween Mora forests and other seasonal evergreen associations, or
sification of gap-filled Landsat 7 imagery centered on December 2007. Mature forest
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Fig. 4. Before mapping forest association, land cover was mapped for Trinidad with decision-tree classification of gap-filled Landsat 7 imagery centered on December 2007,
which is the early dry season. Forest association was then mapped for those areas classified as forest with the gap-filled imagery from 2007 plus three gap-filled images from
the 1980s that were from the mid to late dry season. Mature forest associations are classified according to the system of Beard (1946a).
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corrected scattered pixels of agriculture that were misclassified as
urban lands.

4. Results

The final map of land cover and forest associations for Tobago
(Fig. 3) included the most accurate overall classification, which in-
cluded the thermal band. The final map for Trinidad (Fig. 4) com-
bined the most accurate land-cover classification, which included
the thermal band, the most accurate classifications of forest asso-
ciation, which included all of the gap-filled images from the
1980s, and the edited Mora forests (Fig. 5). Where residual gaps ex-
isted in the 1980s gap-filled imagery, forest association was
mapped with only the 2007 gap-filled image.



Fig. 5. Modeled vs. modeled and edited distribution of Mora excelsa forests in the Northern Range (a and b) and in the southeastern lowlands (c and d) of Trinidad.
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4.1. Interpreting forest association in fine resolution and multiseason
imagery including Google Earth

In supplementing field data with classification training data col-
lected from the fine resolution imagery, unique canopy structure
distinguished nine associations, plus mangroves, regardless of
season. For example, one littoral association has frequent palms;
the other has prostrate stems on the windward edges of patches,
which are narrow. Also with distinct canopy structure were swamp
forest (Pterocarpus officinalis), palm swamp, Mora excelsa forests
(Cm), bamboo stands (Bambusa vulgaris), abandoned coconut (Co-
cos nucifera), teak (Tectona grandis) and pine (Pinus caribaea).
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Apparent differences in water level also helped distinguish for-
ested wetlands from other forests. Mora excelsa forests, which are
a monodominant type, have a smoother canopy that is 15 m taller
and has larger crowns than adjacent types (S3-a). Beard could dis-
tinguish this association in air photos.

For an additional seven associations, plus abandoned woody
agriculture, we identified unique canopy features that were only
present in certain seasons or dates of the fine resolution imagery.
Two or more fine resolution images were available for nearly all
of the study area. Images displaying the seasonal image elements
Table 4
Overall and class-specific overall accuracy for Tobago classification of land cover and fore

Forest formation and association Code

Kappa coefficient of agreement
Overall accuracy (%)

Dry evergreen forest – littoral woodland
Coccoloba uvifera–Hippomane mancinella LWS

Deciduous seasonal forest
Bursera simaruba–Coccothrinax barbadensis Ssd

Semi-evergreen seasonal forest
Hura crepitans–Tabebuia chrysantha–Spondias mombin Sch

Xerophytic rain forest
Manilkara bidentata–Guettarda scabra XFBb

Lowland rain forest
Carapa guianensis–Euterpe precatoria Ccp

Lower montane rain forest
Licania biglandulosa–Byrsonima spicata LMF

Young secondary forest classes
Young secondary forest (<15-20 yr) YSF-Wag
Bambusa vulgaris YSF-B

Edaphic swamp communities
Mangrove ESM
Other wooded wetlands ESO

Nonforest classes
Herbaceous agriculture
Water
Urban, high density
Urban, low density
Grassy areas, pasture

Fig. 6. For the Tobago classification model, the percentage of cases in w
that identified association were available for at least half of the ex-
tent of the seven associations. Examples of these elements are the
lowland seasonal evergreen association Cco, which has a canopy
punctuated by dark crowns in scenes from late April (S3-b), prob-
ably the result of flushing leaves which can be red to brown in col-
or, distinguishing it from another lowland seasonal evergreen type
(Cca). The same dark crowns distinguished the two seasonal ever-
green associations of the Northern Range (Cd and transitional Cd)
from types at higher elevations. Differences in relative deciduous-
ness showed distinct boundaries between three lowland semi-
st type. The relative differences in bold typeface are significant at p < 0.05.

Excluding thermal Including thermal Relative difference (%)

0.93 ± 0.01 0.93 ± 0.01
94 94 0

64 72 13

98 98 0

90 91 1

91 93 2

94 92 �2

96 96 0

89 89 0
79 79 0

96 96 0
86 86 0

73 93 27
100 100 0
94 94 0
91 88 �3
97 96 �1

hich the indicated layer was used in at least one classification rule.
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evergreen associations (Pbl, Aj and Ag). Based on deciduousness we
could also distinguish seasonal from semi-evergreen associations,
including in an area that Beard maps a mixture of the two (Cca
vs. Ag). The semi-evergreen association is either more deciduous
or a brighter green (caused by leaf flush of deciduous species) than
the seasonal evergreen one (Fig. S3-c). Abandoned woody agricul-
ture was also distinct in fine resolution imagery if Erithryna poepp-
igiana was in bloom. It is a nitrogen-fixing legume with
conspicuous coral-colored flowers that farmers plant to shade
and fertilize coffee or cocoa (Fig. S3-d). This feature was mainly
present in the Northern Range.
Fig. 7. The percentage of cases in which the indicated layer was used in at least one cl
indicate attribute usage for classifications using the three 1980s gap-filled images in add
classification model that used only the 2007 gap-filled image.

Fig. 8. For forest type mapping of the Trinidad Northern Range mapping zone, the percen
The lighter bars indicate attribute usage for classifications using the three 1980s gap-fille
usage for the classification model that used only the 2007 gap-filled image.
Although the boundaries between many associations were
sharp, some of the forest to which we assign a community type
is no doubt transitional between two community types. In these
cases we assigned type based on whether the available dates of
fine resolution imagery displayed the identifying deciduousness
or other canopy features described above. One example area is
the south central lowlands where two large patches we map as
predominantly a seasonal evergreen type (Cca) may be transitional
with the nearby semi-evergreen type of Pbl. Another example is in
the central lowlands where, based on deciduousness, we assign Ag
to scattered patches that occur on small hills where the matrix is
assification rule for forest type mapping of the Trinidad lowlands. The lighter bars
ition to the 2007 gap-filled image. The darker bars indicate attribute usage for the

tage of cases in which the indicated layer was used in at least one classification rule.
d images in addition to the 2007 gap-filled image. The darker bars indicate attribute



Table 5
A comparison of overall accuracies for Trinidad, including class-level accuracies. Decision tree classification models that include the gap-filled image from 2007, but that exclude
one to three of the 1980s gap-filled images, are compared against models that include all of the gap-filled images (N = 8525 for Trinidad’s lowlands and 8757 for the rest of
Trinidad). In the Lowlands, the most accurate models used at least two of the gap-filled images from the 1980s, particularly those representing the driest conditions.

Overall accuracy (%) and significance of difference from base case of including all 1980s imageryc

No. 1980s 1985 1986 1987 1985, 86 1985, 87 1986, 87 Base case All 1980s

Synthetic multiseason images included with 2007 image a – Trinidad lowlands
Kappa statisticb 0.84 0.88 0.89 0.90 0.90 0.90 0.91 0.92
Overall 86*** 90*** 91*** 91*** 91*** 92** 93 93

Semi-evergreen seasonal forest
Pbl 77*** 87* 86** 89 88* 91 90 91
Aj 80*** 92 87*** 95 91* 96 93* 96
Ag 82*** 86*** 88* 91 91 95 92 93
Ag_2 59*** 73*** 82 76* 82 77* 82 83

Evergreen seasonal forest
Cco 88** 89* 91 91 91 90* 92 93
Cca 89*** 92** 92** 92** 92** 93* 93 94
Cb 85** 89* 93 91 93 91 94 93
Cm 92 94 97 95 95 93 97 95

Young secondary forests
YSF 82 88 88 92 84 84 88 87
YSF-Woody Ag 85* 86 87 88 88 89 91 89
YSF-Bamboo 90 92 93 91 94 94 94 93

Forested wetlands
Mangrove 99 100 100 99 100 100 99 99
Inland Swamp 93 95 98 95 96 97 95 97

Synthetic multiseason images included with 2007 Imagea – Trinidad Northern Range
Kappa statisticb 0.89 0.90 0.91 0.91 0.91 0.91 0.91 0.91
Overall 93** 94 94 94 94 94 94 94

Deciduous to semi-evergreen seasonal forest
Ip, Ss 74** 86 90 87 93 88 90 88

Evergreen seasonal forest
Cd 99 99 99 99 99 99 99 99

Montane rain forest
Cd_LMF 63 64 68 70 69 68 71 65
LMF 94 95 95 95 95 94 95 95
MF 94 95 93 93 95 95 94 94

Young secondary forests
YSF-Woody Ag 77* 79 79 80 80 81 84 83
YSF-Bamboo 98 98 100 100 100 98 100 100

a No 1980s = all 1980s mosaics excluded; 1985 = the only mosaic included with the 2007 mosaic is that with the reference scene from 1985; 1985, 86 = image mosaics with
the reference scenes from 1985 and 1986 are included with the mosaic from 2007, etc.

b The 95% confidence interval for all Kappa estimates rounds to ±0.01; differences between Kappa estimates that are larger than ±0.01 are significant at p < 0.05.
c McNemar test for related proportions.
* p < 0.05.

** p < 0.005.
*** p < 0.0005.
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Cca. These patches likely receive more rainfall than the Ag patches
closer to the coast. They are likely transitional between the Ag and
Cca communities.

An additional four associations have distinct boundaries in par-
ticular Landsat image dates (Tables 1 and 2), two of which we man-
ually digitized from specific scenes (SMF and Br). Tobago’s
xerophytic rain forest (XfBb) displayed a larger band 4:5 ratio in
wet-season imagery, which we have observed occurs in other
Caribbean forest types with hard leaves and a wind-clipped can-
opy, though we have not seen this observation mentioned else-
where. Other examples were distinct in a specific image date
(Table 1) because of a leaf-off condition, including the distinction
between deciduous and semi-evergreen forests on the Chaguara-
mas Peninsula in northwest Trinidad (Ss vs. Ip); former plantations
of Brazilian rubber (Hevea brasiliensis); and the main areas of the
montane seasonal forest (SMF). In these images these forest asso-
ciations reflected more light in the red band and less in the near
infrared band as compared with adjacent forest. The image from
the 1987 drought was the only image we found in which montane
seasonal forests, which are more seasonal because they occur on
more freely draining limestone substrates, had dropped so much
foliage as to be distinct from surrounding forest. Another note is
that strategic display of Landsat bands 7, 2 and the wetness–
brightness difference index (WBDI) revealed the extent of lowland
Mora. In this display it appears greener on flat lands than other
old-growth forest because it tends to be brighter in the visible
band 2, possibly because its monodominant and therefore smooth-
er canopy has less shadow.
4.2. Classification models

4.2.1. Land-cover classifications and the influence of the thermal band
In Tobago (Fig. 3), the test data for land cover and forest associ-

ation were classified with an overall accuracy of 94% (Table 4).
Class-specific accuracies for test data on forest associations ranged
from 72% to 98% (Table 4). Though we did not make multiseason
image mosaics for Tobago, it has fewer associations, most of which
are closely related to topography. The land-cover classification
models for the Northern Range and lowlands of Trinidad (Fig. 4)
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both classified 97% of test pixels correctly. Test data for all land-
cover types were classified with at least 90% overall accuracy.

Including the thermal band in the Tobago classification signifi-
cantly increased model accuracy for herbaceous agriculture by 27%
(p < 0.05), mainly by reducing confusion with urban grass, but it
lowered accuracy for classifying Lowland Rain Forest by 2% (Ta-
ble 4). The thermal band slightly improved overall accuracy for
classifying urban lands in the Northern Range of Trinidad, in this
case for high density urban lands (by 4%, p < 0.005).

4.2.2. Environmental predictors of forest association
Of the nonspectral predictor layers, temperature variables, ele-

vation, and topographic shadow were included in the most rules of
the decision-tree classification models (Figs. 6–8). Initial tests
caused us to exclude geographic position (with one exception),
rainfall and geology from the mapping model predictor layers,
even though they are highly predictive of forest type. Despite steps
to avoid overfitting, patterns in mapped forest types corresponded
more closely to rainfall or geology than to their actual distributions
(based on comparisons with the fine resolution imagery or other
reference data). This outcome was problematic because the rainfall
maps, for example, lacked sufficient spatial detail to capture the
actual distributions of forest types. Steps to avoid overfitting in-
cluded trials with different levels of tree pruning, which removes
parts of trees, and different minimum numbers of training cases
Table 6
The percentage increase in class-level overall accuracy of decision tree classification mode
2007 mosaic. Bold relative difference indicates overall accuracy significantly different from

Overall Accuracy (%) Relative Change in Overall Acc

Base case No 1980s 1985 1986

Synthetic multiseason images added to base case – Trinidad Lowlands
Semi-evergreen seasonal forest
Pbl 77 11 10
Aj 80 13 8
Ag 82 5 7
Ag_2 59 19 28

Evergreen seasonal forest
Cco 88 2 3
Cca 89 3 3
Cb 85 4 8
Cm 92 3 5

Young secondary forests
Ysf 82 6 6
Ysf_wag 85 1 2
Bamboo 90 2 3

Forested wetlands
Mangrove 99 0 0
Inland Swamp 93 1 5

Base 2007 image No. 1980s

Synthetic multiseason images added to base casea–Northern Range
Deciduous to semi-evergreen seasonal forest
Ip, Ss 74 14 18

Evergreen seasonal forest
Cd 99 0 0

Montane rain forest
Cd_LMF 63 2 7
LMF 94 0 1
MF 94 1 �1

Young secondary forests
Bamboo 98 0 2
Ysf_wag 77 3 3

a No 1980s = all 1980s mosaics excluded; 1985 = the only mosaic included with the 200
the reference scenes from 1985 and 1986 are included with the mosaic from 2007, etc.

b Percentage increase calculated as (p1 � p2 � 100)/p1, where p1 is the overall accura
included with the 2007 mosaic, and p2 is the overall accuracy from Table 5 of models th
for each branch. The exception for geographic position was that
it improved mapping of Mora excelsa forests in the Northern Range
(within the seasonal evergreen group, the Mora forests are the
medium green patches in the northeast and southeast part of Trin-
idad). Mora is dispersal limited and otherwise has broad environ-
mental tolerances (Beard, 1946b). Geographic position helped
map Mora in the Northern Range because the Mora forests there
occur mainly as two large contiguous areas.

Though we removed geology from the sets of predictor layers,
we discovered that the spatial distributions of Tobago’s ‘‘xero-
phytic rain forest,’’ and that of ultramafic geology in Snoke et al.
(2001b), closely correspond. Further, the common dunites among
the ultramafic rocks are highly serpentized (Scott et al., 1999).
The green, sandy, freely draining soils that Beard (1944a) thought
partly responsible for the xerophytism are apparently formed over
ultramafic rocks. The forest also shares physiognomic characteris-
tics and many species with Puerto Rican forests formed over ultra-
mafic, serpentine substrate, being dominated by species with
shedding bark or evergreen, cutinized leaves. In the wet serpentine
forests of Puerto Rico, for example, the trees are ‘‘almost all ever-
green and sclerophyllous, giving the impression of an anomalous
wet desert or dry rain forest’’ (Ewel and Whitmore, 1973). In Puer-
to Rico, the forests in these areas include several endemic plant
species (Cedeño-Maldonado and Breckon, 1996). Because endemic
plants are often found on serpentine substrates, including in the
ls that include 1980s mosaics relative to the base case of models that rely only on the
base case at p < 0.05.

uracy (%) from Base Case of Excluding 1980s Imagerya

1987 1985, 86 1985, 87 1986, 87 All 1980s

13 12 15 14 18
16 12 17 15 19
10 10 13 11 8
22 28 22 27 36

3 3 2 5 4
3 3 4 5 0
6 8 6 9 7
3 3 1 5 2

11 2 2 6 5
3 3 4 6 5
1 4 4 4 0

0 0 0 0 0
1 3 4 1 4

15 21 16 18 19

0 0 0 0 0

10 9 7 12 4
0 1 0 0 0
�1 1 1 0 0

2 2 0 2 2
5 5 5 9 8

7 mosaic is that with the reference scene from 1985; 1985, 86 = image mosaics with

cy from the left-most column, in which no mosaics from the 1980s mosaics are
at include one or more of the 1980s mosaics together with the mosaic from 2007.



Table 7
Areas of land cover and forest type for Trinidad.

Symbol Trinidad forest type and land cover Area (ha) Percent of Trinidad Percent of Forest

Dry evergreen forest–littoral woodland and forest (canopy) 822 0.2 0.2
LWS Coccoloba uvifera–Hippomane mancinella 427 0.1
LWP Roystonea oleracea–Manilkara bidentata 395 0.1

Deciduous to semi-evergreen seasonal forest (canopy) 9617 2.0 2.8
Ss Machaerium robinifolium–Lonchocarpus punctatus–Bursera simaruba 2530 0.5
Ip Protium guianense–Tabebuia serratifolia ecotone and Peltogyne floribunda–T. serratifolia–P. guianense 7087 1.5

Semi-evergreen seasonal forest (canopy) 24,331 5.2 7.1
Pbl P.floribunda–Mouriri marshallii 10,141 2.1
Af Trichilia pleeana–Brosimum alicastrum–Bravaisia integerrima 481 0.1
Ag T. pleeana–B. alicastrum–Protium insigne 9293 1.9
Aj B. alicastrum–Ficus yoponensis 4416 0.9

Evergreen seasonal forest (emergents/canopy/subcanopy) 125,024 26.5 36.5
Cd Aniba spp.-Carapa guianensis/Ligania biglandulosa (Cd) 19,947 4.1
Cco Aniba spp.-C. guianensis-Eschweilera subglandulosa/Pentaclethra macroloba/Attalea maripa 19,232 4
Cca Carapa guianensis-Pachira insignis-E. subglandulosa/P. macroloba/Sabal sp. 40,230 8.3
Cb E. subglandulosa-P. insignis-C. guianensis/Clathrotropis brachypetala/A. maripa 12,326 2.6
Cm M. excelsa-C. guianensis/P. macroloba 33,289 6.9

Montane rain forest (canopy) 34,763 7.4 10.2
Cd-LMF Transitional seasonal evergreen to lower montane 1032 0.2
LMF Byrsonima spicata–Licania ternatensis–Sterculie pruriens (Lower) 31,890 6.6
SMF Inga macrophylla–Guarea guara (Seasonal) 501 0.1
LMF-MF Transitional lower montane to montane 74 0
MF Richeria grandis–Eschweilera trinitensis (Montane Cloud) 1266 0.3

Forested wetland 12,325 2.6 3.6
ESM Mangrove 7492 1.6
ESP Palm swamp – Roystonea oleracea or Mauritia flexuosa 1516 0.3
ESS Swamp forest – Pterocarpus officinalis 267 0.1
ESS-Cca Swamp forest – Cca ecotone 908 0.2
EMF Marsh forest – Manicaria saccifera–Jessenia oligocarpa – Euterpe langloisii 912 0.2
EM-Cco Marsh forest – Cco ecotone 693 0.1
ESO Other woody wetland 537 0.1

Young secondary forest 124,283 26.3 36.3
YSF Young secondary forest 18,592 3.9
YSF-Wag Young secondary forest and abandoned or semi-active woody agriculture 78,832 16.3
YSF-C Young secondary forest – former coconut plantation 2229 0.5
YSF-B Bambusa vulgaris 21,013 4.4
Br Hevea brasiliensis – former plantation 3617 0.8

Tree plantations 11,244 2.4 3.3
PT Tectona grandis 8694 1.8
PP Pinus caribaea 2504 0.5
PO Other plantation 46 0

Total forest area 342,409 72.6

Emergent wetlands and wet savanna 11,075 2.3
EMS Wet savanna, with or without shrubs 277 0.1
ESH Herbaceous wetland and wet savannah 5022 1
EAg Seasonally flooded herbaceous agriculture (active or inactive) 5776 1.2

Recently active agriculture, pasture (excluding wetland agriculture 83,933 17.8
WA Active woody agriculture 3073 0.6
WAC Active woody agriculture – coconut 2709 0.6
Agric Grassy areas, herbaceous agriculture or pasture (including former sugar cane) 65,475 13.6
FC Recently inactive sugar cane 12,676 2.6

Non-vegetated 5639 1.2
Quarry 1658 0.3
Coastal sand and rock 504 0.1
Pitch lake 52 0.6
Bare ground and bulldozed land 388 0.1
Water – permanent 3037 0.6

Urban – high or medium density 8695 1.8
Urban – low density 31,029 6.4
Urban grass 406 0.1
Urban and built-up 40,130 8.5
Total area (forest and nonforest) 471,942
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Greater Antilles, and because the presence of serpentintized rocks
on Tobago has not been previously mentioned in the literature on
Tobago’s vegetation, a botanical survey of Tobago’s xerophytic rain
forests could be warranted.
4.2.3. Influence of multiseason, multidecade imagery on predicting
forest association

In lowland Trinidad, the decision-tree model of forest associa-
tion that uses both the early dry season imagery from 2007, plus



Table 8
Areas of land cover and forest type for Tobago.

Symbol Tobago forest type and land cover Area (ha) Percent of Trinidad Percent of Forest

Dry evergreen, deciduous and semi-evergreen forests 5775 19 23
LWS Coccoloba uvifera – Hippomane mancinella (dry evergreen littoral) 136 0.5
XFBa Manilkara bidentata (dry evergreen Littoral) 194 0.6
Ssd Bursera simaruba–Coccothrinax barbadensis (deciduous) 1271 4.2
Sch Hura crepitans – Tabebuia chrysantha – Spondias mombin (semi-evergreen) 4174 13.9

Rain forest 10,347 34 41
XFBb Manilkara bidentata – Guettarda scabra (xerophytic) 937 3.1
LMF Licania biglandulosa – Byrsonima spicata (lower montane) 4566 15.2
Ccp Carapa guianensis – Euterpe precatoria (lowland) 4844 16.1

Young secondary forests 8798 29 35
Young secondary forest 7038 23
Young secondary forest – former Cocos nucifera plantation 133 0.4
Young secondary forest – Bambusa vulgaris 1627 5.4

Forested wetlands 228 0.8 0.9
Mangrove 216 0.7
Other woody wetland 12 0
Total forest area 25,148

Herbaceous wetland 7 0
Agriculture, grassy areas and pasture 2156 7.2
Active woody agriculture 71 0.2
Active woody agriculture – coconut 10 0
Grassy areas, herbaceous agriculture or pasture 2075 6.9
Nonvegetated 235 0.8
Quarry 24 0.1
Coastal sand and rock 115 0.4
Bare ground and bulldozed land 57 0.2
Water – permanent 39 0.1

Urban or Built-up 2556 8.5
Urban – high or medium density 178 0.6
Urban – low density 2206 7.3
Urban grass 172 0.6

Total area (forest and nonforest) 30,095
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all of the late-dry season mosaics from the 1980s, correctly classi-
fies 93% of all test pixels (Kappa = 0.92 ± 0.01). This result is highly
significantly different from the 86% accuracy for models that
excluded the 1980s imagery (p� 0.0001) (Kappa = 0.84 ± 0.01)
(Table 5). It is also significantly different from (p� 0.0001), but
only slightly more than, the Kappa coefficient for models that in-
clude only the mosaics from 1985 or 1986 (p < 0.005), but it is
not significantly different from the model that included only the
mosaic from the drought (1987). At the class level, excluding all
of the late dry season data results in significantly different and
lower overall accuracy for all semi-evergreen and most seasonal
evergreen associations and for the older secondary forest class
(young secondary forest and abandoned woody agriculture, or
YSF-Wag).

In the mountainous Northern Range of Trinidad, if at least one
mosaic from the 1980s is included in a decision-tree model, overall
classification model accuracy is no different than if all of the 1980s
mosaics are included. If no mosaics from the 1980s are included,
overall classification accuracy for deciduous forest and one young
secondary forest class (YSF-Wag) are significantly different
(p < 0.005) and smaller. These results do not reflect the fact that
montane seasonal forest was only visually distinct in the
drought-year image, because we manually delineated that class.

Including the 1980s mosaics results in large relative increases in
overall accuracy at the class level for some classes, even when the
overall accuracy calculated across all classes is only slightly larger
(Table 6). In the Trinidad lowlands, relative accuracy of semi-ever-
green forest classes is 7–36% larger when one or more of the 1980s
mosaics are used in the models. Smaller relative increases of 3 to
11% occur for seasonal evergreen classes. The secondary forest
class YSF-Wag is 5–6% more accurate in two combinations of
mosaics that include 1980s data. In the Northern Range, deciduous
forest accuracy is 14–21% greater if 1980s data are included; YSF-
Wag accuracy is 5–9% larger for three combinations of mosaics that
include 1980s data. In general, classifications were most accurate if
the models included a mosaic with a reference scene from early
May, the absolute end of the dry season (1986, 1987), particularly
that from the 1987 drought.
4.3. Areas of land cover and forest types in Trinidad and Tobago

Trinidad is 73% forested, 8% urban and 18% active or inactive
herbaceous agriculture or pasture (Fig. 3, Table 7). Sugar-cane
fields that are no longer cultivated compose at least 2.6% of Trini-
dad’s land area and most of the wetlands converted to agriculture.
Thirty-six % of forests are mature seasonal evergreen forests, 36%
are young secondary forests, 10% are mature montane forests, 7%
are mature semi-evergreen forests and 4% are forested wetlands.
Stands with >60% cover of the nonnative bamboo, Bambusa vulga-
ris, compose 4.4% of Trinidad’s area (6% of its forests). The mature
forests include much old-growth forest or forest subject only to
selective logging or wildfire.

Tobago is 84% forested, 8.5% urban and 7.2% agriculture or
grassy areas (Fig. 4, Table 8). The most extensive forest types in To-
bago are lowland and lower montane rain forests, young secondary
forests and well-developed but secondary semi-evergreen forests.
Of Tobago’s other forests, 3% are xerophytic rain forests and 4%
are deciduous seasonal forests. Nonnative bamboo forests occupy
5% of Tobago and 6% of all forest. The lower montane and xero-
phytic rain forests are believed to have not been subject to clearing
for agriculture before 1944 (Beard, 1944a,b).

Keith
Highlight
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5. Discussion and conclusions

5.1. Mapping tropical forest associations with gap-filled Landsat
imagery and Google Earth-enabled selection of training data

Our results highlight that tropical tree communities can be
mapped to the level of forest association with ‘‘noisy’’ gap-filled
Landsat imagery, at least if, as in this study (1) extensive training
data can be collected that represent the spectral and spatial vari-
ability of each association; (2) sufficient ancillary data are available
– the temperature and topographic data that we used are available
for all of the tropics; and (3) characteristics of associations, like
deciduousness as reflected in multiseason imagery, allow discrim-
ination among a known set of tree communities.

With field data, historical maps for public lands, and detailed
descriptions of forest associations, we learned to identify most of
the tree communities in the fine resolution imagery viewable with
Google Earth. We discovered that a large portion of the forest asso-
ciations were distinct in the fine resolution imagery viewable there
because of unique growth form or canopy structure. Other associ-
ations had distinct leaf or flowering phenology that was visible in
certain seasons, and the appropriate season of imagery was often
also viewable with Google Earth. The multiseason views there al-
lowed us to collect enough training data to compensate for the
noise in gap-filled imagery and the complex spatial distributions
of forest types.
5.2. Synthetic multiseason, multidecade Landsat imagery, particularly
from droughts, are important

We found that multiseason Landsat imagery from the late dry
season, even when it was gap-filled synthetic multiseason imagery,
significantly improved mapping of tropical forest associations that
differ in the numbers of tree species and individuals that are decid-
uous. Multispectral satellite imagery is specifically designed to de-
tect differences in vegetation greenness and consequently well
suited to discriminate floristic associations that differ in decidu-
ousness. In many landscapes, ancillary data on environmental vari-
ables will be required to map different forest classes. In some cases,
however, spectral data may better reflect these differences than
ancillary data can. This is particularly important where topography
does not strongly predict forest type, as is the case in Trinidad’s
lowlands. The multiseason imagery helps delineate the spatial dis-
tributions of some associations where available rainfall maps do
not have sufficient spatial resolution to help distinguish finer-scale
patterns in forest type, as in this study. Other classes were most
distinct in wet-season imagery, including the xerophytic rain for-
ests of Tobago, which we found here are closely associated with
ultramafic geology.

Our results also highlight the value of class-specific compari-
sons when evaluating differences in classification accuracy. Overall
accuracy is more typically evaluated, but in this study the largest
improvements from adding multiseason imagery were at the class
level. Although this seems obvious, it is not always considered.

With multidecade imagery, imagery from past climate ex-
tremes or from stand-clearing disturbances can help classify for-
ests in current imagery. Here we discovered that Landsat
imagery from a past drought is better for distinguishing forest
associations that are spectrally similar in the average image for
most dates. The boundaries between several associations are
most distinct, or are only distinct, in imagery from the late dry
season of a severe drought. Droughts, floods, or other climatic
events that are not annual events may still shape community
composition. Stand-clearing disturbances can also affect tree spe-
cies composition, and in this study older imagery also improved
detection of older secondary forest and abandoned woody
agriculture.

5.3. Mapping low-density urban lands

The thermal band did not much improve mapping of low-den-
sity urban lands, similar to general understanding (Yang et al.,
2003). But model accuracy for low-density urban lands was better
than in our prior work (Helmer et al., 2008; Kennaway et al., 2008).
The improved accuracy for low-density urban lands probably
stems from a more restricted selection of training data to Landsat
pixels that clearly reflected a mixture of natural vegetation and
built-up lands. We did not attempt to include with this class pixels
with as little as 15% cover of man-made structures as in the prior
work. The strategy produced visually and statistically excellent
results.

5.4. Approach potential and limitations

Though we used specialized software to produce the gap-filled
imagery and apply the decision-tree classification models, alterna-
tives will soon be freely available with Google Earth Engine (GEE)
(http://earthengine.google.org). It is expected that GEE will allow
users to make a composite Landsat image, input classification
training points collected from Google Earth, and then apply the
points to classify one or more dates of Landsat imagery with a ma-
chine learning algorithm. Other Landsat image products may also
become available over time. Roy et al. (2010), for example, pro-
duced gap-filled Landsat imagery for the US. Similar gap-filled data
could soon become globally available.

Persistent cloudiness affects forest mapping in many tropical
forest landscapes, and the scan gaps in Landsat 7 imagery have
added to the need for combining many scenes to cover an area
(Trigg et al., 2006; Lindquist et al., 2008). In Trinidad and Toba-
go, many floristic differences are associated with physiognomic
differences in deciduousness or inundation that are visible in
Landsat imagery from certain times. This relationship between
floristics and physiognomic features that are detectable in multi-
season imagery is likely to be repeated elsewhere. To the extent
that synthetic gap-filled Landsat imagery can be created that re-
flects these differences, the approach here may be applicable
elsewhere.

A limitation to this approach is that in remote places, fine reso-
lution images viewable with Google Earth are still limited to one
season or only a portion of each Landsat scene. This drawback,
however, will be less important as the global archive of fine reso-
lution imagery increases and in more uniform landscapes, samples
of fine resolution imagery may be sufficient. Floristic classifications
based on data as comprehensive as that for Trinidad and Tobago
are not available for all tropical forests. However, 20th century
ecologists have described many of the major tropical tree commu-
nities, and these descriptions may be useful where there has not
been large-scale disturbance since those studies. Another consider-
ation is that floristic differences between adjacent classes may not
always be clearly identifiable from differences in phenology or dis-
turbance history. For example, gradual changes in species compo-
sition may be difficult to define when collecting classification
training data from fine resolution imagery.
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